

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΣΧΕΔΙΟ ΠΑΡΟΥΣΙΑΣΗΣ

ΑΤΟΜΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ

Μάιος 2013

Ατομική Διπλωματική Εργασία

RECONSTRUCTION OF EVERYDAY LIFE IN

19TH CENTURY NICOSIA

Καλυψώ Δαυίδ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Μάιος 2013

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Reconstruction Of Everyday Life In 19th Century Nicosia

Καλυψώ Δαυίδ

Επιβλέπων Καθηγητής

Γιώργος Χρυσάνθου

Η Ατομική Διπλωματική Εργασία υποβλήθηκε προς μερική εκπλήρωση των απαιτήσεων

απόκτησης του πτυχίου Πληροφορικής του Τμήματος Πληροφορικής του Πανεπιστημίου

Κύπρου

Μάιος 2013

i

Acknowledgments

Firstly I would like to thank my supervisor Dr. Yiorgos Chrysanthou for giving me the

opportunity to work with this wonderful project thus expand my knowledge in the field of

computer graphics under his aid and guidance over the project. I am also very grateful to

PHD candidate research assistant Panayiotis Charalambous, for the precious help he

generously offered me, whenever in need or at time of great difficulty. His advice turned out

to be a huge contribution to the successful completion of my project.

I would also like to acknowledge and dedicate this thesis to Antonis and my friends Marielli,

Julia, Eleni and Christos as they have always been by my side. All of them were constantly

encouraging me to work harder, believed in me, relieved me of me of doubts, and set advice

to me when needed. They were my inspiration throughout the four years of my studies at the

University of Cyprus, and I could always count on them.

I would like to thank my parents and my brother, for bearing with me all the time that I was

working on my dissertation and for my absence from home.

ii

Abstract

This project’s aim is to extend previous work done in University of Cyprus. This project’s

overall scope is to present the everyday life of the city of Nicosia during the 19th century,

with the different socio-economic identities of its people. The Computer Science Department

of University of Cyprus in cooperation with Leventis Municipal Museum of Nicosia, aim to

produce a tool which can be used by architects, historians and archaeologists and for

educational purposes as well. I had been given models of buildings of Taht el Kale,

neighborhood in Nicosia, which were generated using architecture rules and data from land

registry from the 19th century. My project’s objective, is to augment, this ‘cultural site of

Nicosia’ with virtual civilians with high level behaviour. By inserting realistic civilians

wandering around the city, we are giving “life” to the old city. Implemented in Unity 4,

intelligent autonomous virtual characters have been produced which look and behave

realistically. Each autonomous character is assigned a list of tasks to accomplish such as go to

a place, talk with other people, dance, go to the market for shopping, etc. For each character’s

action the appropriate animation is played and the transition from one action to the other is

quite smooth by utilizing Unity’s Mecanim animation system. Dynamic tasks are triggered

under certain conditions. Steering is managed and collision avoidance between human agents

is accomplished using UnitySteer.

iii

Contents

Acknowledgments ... i

Abstract ... ii

Chapter 1 Introduction ... 1

1.1 General ... 1

1.1.1 What is Crowd Simulation? .. 1

1.2 Motivation .. 2

1.3 Scope .. 3

Chapter 2 Previous work .. 5

2.1 Work at UCY .. 5

2.1.1 Modeling the Walled City of Nicosia ... 5

2.1.2 Reconstruction of Everyday Life in 19th Century Nicosia......... 6

2.2 Crowd Simulation ... 7

2.2.1 Macroscopic approach .. 7

2.2.2 Microscopic approach ... 8

2.3 Crowd Simulation in Cultural Heritage Environments 10

2.3.1 Populating Ancient Pompeii with Crowds of Virtual Romans . 10

2.2.3 A Framework for Real-Time Virtual Crowds in Cultural

Heritage Environments ... 11

Chapter 3 Overview .. 14

3.1 Project’s Components ... 14

Chapter 4 Implementation of various modules .. 19

4.1 Map Graph .. 19

4.2 Path Planning .. 23

4.2.1 Unsuccessful attempts... 23

4.2.2 Junction waypoint Graph .. 25

4.3 High level behavior .. 26

4.3.1 Triggers ... 30

iv

4.4 Animations ... 31

4.5 Low level behavior ... 35

4.5.1 Steering ... 35

4.5.2 Collision avoidance... 37

Chapter 5 Results .. 40

5.1 Map Graph .. 40

5.2 High Level Behavior and Steering ... 41

5.3 Marketplace .. 44

Chapter 6 Future Work .. 46

6.1 Improvements ... 46

Bibliography ... 48

1

Chapter 1 Introduction

Introduction

1.1 General 1

1.2 Motivation 2

1.3 Scope 3

1.1 General

All around us, in any normal day, we can see people moving, waiting for the bus, driving

their cars, eating, doing sports, meeting with friends and be part of various activities, many of

which, include interacting with each other as well. We often take human activities for granted

but if some were missing we would certainly notice. Just imagine a train station or a school

without students walking around, working, studying and interacting together. This is the

challenge I was faced to accomplish through this dissertation project, by adding to a broader

project lifelike virtual civilians behaving naturally in the streets of the city of Nicosia of the

19th century – a town generated with the use of graphics, depicting the city at that era. This

project’s aim is to present a unique insight to the everyday life of the city of Nicosia of the

time, concerning both socio-economic aspect of its people and the spatial organization of the

building within the walls during the 19th century.

1.1.1 What is Crowd Simulation?

To begin with, we have to define some terms that will be used throughout this project.

The term crowd refers to a group of things or people who are gathered closely together.

Crowd may refer to any group of objects adjacent to each other. The members of a crowd

may share an image, reputation or even some kind of common behavior.

2

Crowd simulation is the process of simulating a number of people, masses of creatures or

other characters who interact together in the same environment. Each person (called actor, or

agent too) has its goals, responds to others and interacts with the environment. Crowd

simulation has applications in many places, from architectural planning to improve visually

some training environments and virtual realities and to artificially – intelligent characters in

movies and games (e.g. Lord of the Rings). Crowd Simulation is frequently used in 3D

Computer Graphics and it has many topics to research on, such as real-time path finding,

motion planning and collision avoidance. Computer animation and simulation applications

can be used for entertainment purposes, education, training and human factors analysis for

building evacuation. Many applications simulate scenarios where crowds gather and disperse,

work, play, have their goals and some tasks to achieve. These simulations may occur in

places like sporting events, concerts or streets of a city.

There are two categories for simulating the movement and the interactions. The first one is

called Particle motion and it refers to the motion of point particles, which is animated by

simulating forces such as gravity, wind, points of attractions and collisions. This method,

although easy to implement, is a bit unrealistic, because of the difficulty of directing

individuals and it is generally limited to flat surface. The other one is Crowd Artificial

Intelligence, where agents have specific goals and interact with others, as people in real

crowds do. Sometimes agents can respond to environmental changes. This way the result is

much more realistic than particle motion, but is more difficult to implement. My project is

more similar to the last one and it is agent-based, that is, every single one of them has a

different behavior and acts as an individual and not as a part of a larger group.

1.2 Motivation

This dissertation project combines both graphics and algorithms, the two subjects I love most

in Computer Science field. I am really attracted in everything that has to do with graphics,

movies, animation, games, music etc. and that is the main reason for deciding to work with

Dr. Yiorgos Chrysanthou as a supervisor. The project’s objective, is to add ‘human-like’

models inside the old walled city of Nicosia and to assign appropriate behavior to them.

Being highly interested over animations, I have decided into pursuing a master’s degree on

specialization on graphics and animation, so as to gain specialization over the matter, thus

this project is ideal to work in this filed.

3

With this project I am also able to work with cultural aspects of Cypriot history and the result

of my work can be used for educational and entertainment reasons at the same time. Students

can learn through interactive walkthroughs, and at later stager, role playing games within the

3D environment of the city and the everyday activities of the people at the period [1].

1.3 Scope

This project’s overall scope is to present the everyday life of the city of Nicosia during the

19th century, with the different socio-economic identities of its people. The Computer Science

Department of University of Cyprus in cooperation with Leventis Municipal Museum of

Nicosia aim to produce a tool which can be used by architects, historians and archaeologists

since they can study the spatial organization of its buildings within the walls of the city.

It will be used for educational purposes too, as students will be able to learn the history of the

city of Nicosia and everyday activities and customs of people at that time through interactive

walkthroughs and role playing games within the 3D environment. This historical era is

interesting because in the end of the Ottoman era, Muslims coexisted with the Christian

Orthodox population and other minorities, so we can detect diverse roles and civilians’

behaviours.

Figure 1-1: Drawing depicting a market place in Nicosia of the 19th century [24]@@?

4

My project’s objective is to augment this ‘cultural site of Nicosia’ with virtual civilians of

high level behaviour. By inserting realistic civilians wandering around the city, we are giving

“life” to the old city. So, intelligent autonomous virtual characters should be produced and

should look and behave in a realistic manner. Using the information taken from the museum

and from Land Registry, old photographs and written documents, the civilians presented in

the project will be dressed, act and behave according to their religion, social status and

occupation. I developed a simulation, which assigns each autonomous character a list of tasks

to accomplish, such as going to a place, talk with other people, dance, go to the market for

shopping, take part in social gathering etc… To achieve this, a rule-based motion planning

system will be used for collision avoidance. For each character’s action the appropriate

animation should be played and the transition from one action to the other should be smooth.

Low level behavior such as steering is managed, whereas collision avoidance is accomplished

using UnitySteer[2].

5

Figure 2-2: Screenshot of the output model [3]

Chapter 2 Previous work

Previous work

2.1 Work at UCY 5

2.1.1 Modeling the Walled City of Nicosia 5

2.1.2 Reconstruction of Everyday Life in 19th Century Nicosia 6

2.2 Crowd Simulation 7

2.2.1 Macroscopic approach 7

2.2.2 Microscopic approach 8

2.3 Crowd Simulation in Cultural Heritage Environments 10

2.3.1 Populating Ancient Pompeii with Crowds of Virtual Romans 10

2.2.3 A Framework for Real-Time Virtual Crowds in Cultural Heritage

Environments 11

2.1 Work at UCY

2.1.1 Modeling the Walled City of Nicosia

In 2003 M. Dikaiakou et al.[3] have attempted to model the Chrysaliniotisa Quarter in

Nicosia, by creating a partly-automatic system using the GIS data of the region as input to the

system and structural analysis of the region’s buildings. For this project an official typology

of the buildings was needed, as well as

the ground plan of this specific area for

the 2D visualization. So, the team

followed the subsequent method:

firstly they proceeded to the

construction of the 3D Component

Library and the Special Buildings.

6

The team has developed some components such as windows, doors, kiosks, arches, roofs and

balconies and has tried to combine them in order to create some of the 3D buildings.

Secondly the team after reading and parsing the GIS input files, roads are identified and some

building features like ‘neighboring’ and ‘facing-road’ edges. Houses were classified in four

main categories: Original Courtyard, Minimal Courtyard, Planned Serial and New Courtyard.

Other buildings were generated automatically with rule-based techniques. Depending on the

type of each house, very good 3D models have been produced and the output of the program

is realistic.

2.1.2 Reconstruction of Everyday Life in 19th Century Nicosia

My project’s aim is to extend the

features of the project ‘Reconstruction of

Everyday Life in 19th century Nicosia’[1]

and add lifelike human models to the

scene already created. This project

involves the recreation of the urban

environment of the city based on historic

and archival information from Land

Registry documentations of the Ottoman

era taken by British engineers.

Title deed archives of the Land Registry Department in Nicosia, the usage of each room,

extra features (trees, wells), the ethnicity and profession of the owner, printed maps, some

photos, drawings and paintings as well, were taken into account to create 3D representation

of the architectural building types of the walled city. A set of rules and 3D components

(windows, doors, arches) were created and passed to a procedural modelling system

Diagram 2-1: The reconstruction process

Figure 2-3: 3D view of the map in CityEngine

7

(CityEngine) to generate the city model by creating the 3D model for each house. Rules for

different building types (one, two floor house, store) were defined: Structures are first created

upon the street line, living spaces took one or two floors, whereas stores rooms, animal sheds,

kitchens found to be taking up the back inner spaces[1]. Also all buildings, except shops, are

organised around an inner open yard, first floors have smaller windows than upper floors and

doorways are centrally set in the facade upon the street. With the process described above the

Taht el Kale Mahalla neighbourhood in Nicosia was recreated with the results shown in

Fig.2-3 above.

2.2 Crowd Simulation

There are many crowd simulation methodologies and what makes them different is the

technique used to generate the motion path. These methodologies are separated in

macroscopic and microscopic methods and are used to model the movements of the agents.

2.2.1 Macroscopic approach

Models based on macroscopic approach focus more on the flow - the system as a whole

rather than on the characteristics of individual agents and their character and they are used for

predicting traffic needs and capacities

for large scale structures such as

stadiums, airports, train stations etc.

In this category fall the next models:

Regression models use statistically

established relations between flow

variables to predict flow operations and

flow’s characteristics depend on the

infrastructure (stairs, corridors) [4]. In

Route Choice models characters

calculate the in-between destinations of

their path, so that they maximize the utility of their trip (travel time, comfort) [5]. Gaskinetics

use an analogy of fluid or gas dynamics to describe how crowd density and velocity change

over time [6]. Pedestrians in Queuing models move through the network from node to node

using Markov chain models by defining a set of states with transition probabilities. Nodes

usually are rooms and links are portals or doors [7].

Figure 2-4: Cardiff City match day queue management [25]

8

Figure 2-7: Rule based system–microscopic approach [13]

Figure 2-6: Rule based system–microscopic approach [13]

2.2.2 Microscopic approach

Microscopic models study the behavior

of the agent, the decisions they make

and their interaction with other

characters -people models- in the

crowd. There are two subcategories of

microscopic models: social force

models and cellular automata models.

Social Force model is a microscopic, continuous time, continuous space simulation which is

using real forces such as friction, dissipation, repulsive interaction and fluctuations to create

analogous “virtual” forces. These virtual social forces are used to solve Newton’s equation of

motion and therefore calculate the motion

of each individual character. This model is

pretty simple and character behavior is

very realistic, it gives the impression of

real-world crowd movement. Every

character-agent is represented as a small

circle in the map and model describes

continuous coordinates, velocity and

interactions with other objects [8]. Each

force is individual for each character and is

often chosen based on empirically taken or plausible data. One of the most important models

using empirically derived social forces is Helbing’s model [9]. To simulate the interaction

between people and obstacles repulsion

and tangential forces are applied,

resulting in realistic behavior. The main

drawback, though, of this model is that

agents seem to “shake” or “tremble”

because of the plentiful “intruding” forces

in high-density crowds.

Figure 2-5: Agent-based system. People evacuating room [26]

9

Figure 2-8: Left: Autonomous pedestrians wandering in Pennsylvania station in New York. Right: The SIMS 3 game

Autonomous Pedestrians[10] is another really interesting decentralized microscopic model

which integrates motor, perceptual, behavioral and cognitive components, where pedestrians

act as autonomous individuals capable of a broad variety of activities, including selecting an

unoccupied seat and sit down, meet with friends and chat and queue at ticketing area and

purchase a ticket. This model incorporates appearance, motor, perception, behavior and

cognition sub-models. Pedestrians are self-animated and are able to perceive the environment

around them (sense ground height, static and mobile objects), make decisions according to

them and behave naturally. They also maintain an internal mental state and according to their

physiological, psychological and social needs, people with an action selection mechanism

choose the appropriate behavior to fulfill the need. A similar example of microscopic

approach is the commercial game The SIMS™ 3 [11](Fig.2-8).

Cellular Automata Model is an artificial intelligence approach, to simulate crowds where

space and time are discrete and physical quantities bearing a finites of discrete values.

A cellular automaton is a collection of cells, each in one of a finite number of states, on

a regular grid of specified shape that evolves through a number of discrete time steps

[12]. The new state of each cell is determined in terms of the current state of the cell and the

states of the neighboring cells, in its neighborhood. Floor space is discrete and characters can

only move to an adjacent free cell. This results in realistic simulations for low-density

crowds, but unrealistic for high-density ones. This approach doesn’t allow contact between

individuals, although it is fast and simple to implement.

Rule-based models have realistic results for low/medium-density crowds in a flocking style,

but do not handle contact between agents, so it doesn’t simulate “pushing” behavior.

Characters are applying “wait” rules to avoid contact, therefore calculation of collision

detection and response isn’t needed. A famous rule-based model is Reynolds’ “boids”

http://mathworld.wolfram.com/Grid.html

10

model[13]. This model is a particle system, where each oriented particle stands for a

simulated entity–boid. Every boid is implemented as an independent actor that moves around

according to the simulated laws of physics, some animated behaviors and its local perception

of the dynamic environment. The simulation of “gathering” behavior is implemented using

the rules of ‘Separation’-change direction to avoid crowding with other characters,

‘Alignment’-change direction towards the average heading of the local agents and

‘Cohesion’- steer towards the average position of local characters [8]. The “gathering”

behavior requires reaction and data from within a neighborhood in order to avoid collision

with other agents and obstacles in the environment. In addition, each agent has access to the

whole environment description and boids with this steering behavior are becoming part of a

complex autonomous system where they can react with the environment, such reactions are

wander, path following, arrival and combined behaviors like queuing, flocking, collision

avoidance and leader following.

2.3 Crowd Simulation in Cultural Heritage Environments

My aim is to simulate human agents in the city of Nicosia in the 19th century. Therefore we

are simulating crowds in environments of cultural heritage. Various models have been

developed to simulate crowds in old towns or markets and are trying to give a glimpse of the

lifestyle of the people living there at the era.

2.3.1 Populating Ancient Pompeii with Crowds of Virtual Romans

Similar to our project ‘Reconstruction of Everyday Life in 19th Century Nicosia’ is the

project ‘Populating Ancient Pompeii with Crowds of Virtual Romans’ [14] whose aim is to

present the life of Ancient Pompeii and simulate crowds of

Romans and their everyday interactions. The ancient city of

Pompeii has been reconstructed

with graphics based on

archaeological data and virtual

Romans were added in the streets

to simulate life, just before the

eruption of volcano Mount

Vesuvius in79 A.D. The models of

the buildings were generated with

Figure 2-10: A crowd of Virtual

Romans simulated in a reconstructed

part of Pompeii [14]

Figure 2-9: the generated

Pompeii districts

11

Figure 2-11: Graph vertices are marked with special

behaviors: “look at” (in white), “stop looking at” (in

black) and “target point” (in red)

the CityEngine modelling tool, the same tool used for creating our project’s buildings.

Circular areas -graph vertices- show where

characters can navigate without colliding with

the environment. Agents can move from one

vertex to the other, if two vertices intersect.

These vertices make up the navigation graph,

based on which crowd behaviour is updated

individually for each Roman.

To exhibit realistic behaviour of the Roman crowd, two models were used, a high-resolution

one for rendering purposes and a low-resolution model to label semantic data on it.

The ancient city had some poor and some rich districts and a certain class of people was

prohibited to go there, e.g. poor people were restricted in the rich area, so we can only see

them wander in poor and older district and vice versa. There are some geometry semantics

that trigger specific behaviours and actions of the civilians. When entering a shop, a person

walks inside and gets out with amphora or with bread when they enter a bakery. Geometry

semantics are placed on doors and window objects too, so that people have to slow down and

look through the window or the door.

My project is using junctions to make a graph, whose nodes, each agent will use to find its

way through the city streets. Civilians wonder in old town of Nicosia but they are not

carrying things around such as bread or vegetables, neither they look towards a door or a

window when they pass by. In addition, crowd navigation and path finding is handled using a

waypoint graph. Civilians have to fulfil more complex tasks according to their identity. Real

data from land registry is used and this way, appropriate behaviour is assigned according to

the occupation of the owner of a house.

2.2.3 A Framework for Real-Time Virtual Crowds in Cultural Heritage Environments

G. Ryder, P. Flack and A.M. Day attempted to “revive” Tombland, a section of Norwich

[15]. In their implementation, the ground was flat and a combination of methods was used to

achieve faster and more flexible rendering resolution. To create the scene in real-time trees

were deleted and reintroduced by billboard representations, texture sizes were reduced, walls

were flattened leaving a textured polygon, building interiors and back facing walls were

12

removed and any small objects of insignificant importance were deleted, whereas other

geometric objects, such as chimneys, were simplified.

Human models were created in 3DStudio Max as

Biped models and exported to an OpenGL

application and animations were created in

Character Studio. For the rendering of the scene

techniques like Baked Geometry, Billboards, Color

Variety and different levels of detail. Color Variety

on the clothes of the human models was produced

using GLSL’s fragment shader where register

combiners based on an alpha mask added color

variety to billboards.

To solve agents’ placement and navigation Ryder et al. needed a Heightmap, a Spacemap and

a Placementmap, which were created by the system. To find where humans can walk and

where they cannot a Spacemap was created by testing a bounding box with the maximum

dimensions of virtual humans. If this bounding box intersects with any triangle, this sample

point cannot be accessed by humans. Placementmap distinguishes space inside and space

outside a building and by combining this with the Spacemap we can define if a point is valid

starting position for a model or not. So, this

project places people within the scene, upon the

floor and it generates fast automatic target

points within the scene, after the three maps are

generated by the system.

Animation was restricted to just walking for

simplicity, as the method used lacks run-time

flexibility and adds memory overhead to the

simulation. The three maps are created offline,

once for each model, before starting the

simulation for the same reason. Middle level

detail mesh (around 3000 triangles per person) was used in order to minimize the rendering

cost and achieve better speedup.

Figure 2-12: A screenshot of the crowd in

Tombland, Norwich, UK [15]

Figure 2-13: Spacemap visualization. Bounding

boxes are spaces around the object edges. Some

small areas remain inaccessible due to the size and

the axis-alignment of the bounding boxes.[15]

13

My project differentiates, as the civilians in old Nicosia have more complex tasks and a

variety of animations thus they are not limited to walking around the city. Cypriots civilians

have various animations such as walking, talking, listening, staying idle and dancing. Of

course each project is referring to different historic periods and areas. In addition, path

finding in my project is implemented with a graph with waypoints, whereas the ‘Tombland

project’ [15] uses bounding boxes to find the accessible areas by testing intersection of them

with virtual people. Also in my project I am not using all three maps (Spacemap, Heightmap,

Placementmap) and virtual civilians’ starting position is statically assigned to each one using

data written in a text file.

14

Chapter 3 Overview

Overview

3.1 Project’s Components 14

3.1 Project’s Components

The overall objective of our project ‘Reconstruction of Everyday Life in 19th Century Nicosia’

is to create a realistic model of the town within the walls. My project’s aim is to do a small

part of the broader project, to add lifelike human models of the town’s civilians that behave

and act naturally and according to the behavior of the people living in Nicosia at that time, in

line with what is written in historical books, photos and drawings depicting the life of that

era.

Diagram 3-1: Components are gathered from various sources and imported to this project to achieve a vivid

representation of lifestyle

15

Many features from various sources are required in order to achieve a realistic result.

We need models to illustrate the buildings within the walled city and human models to add

life to the city. People should have a purpose, some goals to achieve, rather than just wander

around the city. For that reason, people should have realistic animations, some kind of high

level behavior, low level behavior for collision avoidance and an algorithm for path planning

in order to find the shortest path to their destination. Hence, a graph should be generated for

the map of the city, so that people can find their way throughout the city. A platform is also

needed to load all the components and produce a project that portrays the city along with its

civilians, behaving like people would do, if they were living in Nicosia in the 19th century.

We have come up with the following model described in a nutshell below. To create this

model we are using work from other projects, previous University of Cyprus students’

studies, even models downloaded from Unity asset store (diagram 3-1).

We are using the Unity 4 as a platform for our activities, as it is a powerful rendering engine

with a variety of tools, rapid workflows and a user-friendly GUI. Unity[16] is a game

Figure 3-14: Unity 4 interface with Mecanim’s animation controller used for blending animations from one to

another using a state machine [27]

16

development system, a cross-platform game engine, that it is widely used for producing video

games for desktops, consoles, even mobile devices, supporting development for Android,

iOS, Windows, Linux, web browsers, Flash, Playstation 3, Xbox 360 and Wii U. It supports

code written in C#, Javascript or Boo. For this project I used C# for my scripts. This game

engine handles the rendering of the scene, as it supports bump, reflection and parallax

mapping, screen space ambient occlusion and dynamic shadows using Direct3D, OpenGL

and OpenGL ES. Scripting is built on Mono, the open-source implementation of the .NET

Framework. Unity Asset Store is available within the Unity editor and it consists of hundreds

asset packages from textures and materials, particle systems, sound effects to 3D models,

animations, even tutorials and ready-made projects. Apart from assets available for download

from Asset Store, art assets – models and file formats from 3dsMax, Maya, Softimage,

Blender, Adobe Photoshop etc., are supported by Unity and can be easily imported to a

project.

Unity’s version 4 introduced a new animation system, Mecanim, which blends animations

and makes motion of human or non-human characters fluid and natural with an efficient

interface. Mecanim is a simple and powerful animation technology, that provides tools for

creating state machines, blend trees, IK rigging and automatic retargeting of animations from

within the Unity editor.

Title deeds archives provided by the Land Registry department in Nicosia, along with the

first ever land survey, conducted in the city of Nicosia headed by Lord Kitchener in the

1880’s (Fig.3-15(a)) were used to create a digital map (Fig.3-15(b)) of the city as it was in the

Figure 3-15: (a) Kitchener’s Map from 1880 represents an outline of built volumes in the city. (b) 2D digital

map of the Taht el Kale mahalla containing architectural ground elevation of buildings with reference to the Land

Registry index and information [1]

17

19th century. These give information not only about the location of roads and houses, but also

about how each room in the house was used (kitchen, living space, store room, chicken coop

etc), other features like trees, outside ovens and wells, the ethnicity as well as the profession

of the owner of each house[1]. Architectural rules of the buildings were created by

Charalambos Apostolou, according to this information and fed into CityEngine[1] to generate

the models of each building in the area of Taht el Kale. To create the marketplace scene,

models from Medieval Marketplace[17] were downloaded from Unity’s Asset Store.

A graph is made according to the map of Nicosia that was taken from the real data from land

registry of that historic era. An input file with the vertices and the edges of the graph is

required and this is imported into Unity 4. This graph sets the streets, where people can move

and accomplish the tasks given. Also a new node, such as door or shop can be added, even if

they were not in the input-file that is used to create the map in the beginning of the program.

The main components are the human models which are representing the civilians of the old

town within the walls. Human models need a skeleton, which is used for animating the

character later, geometry, so it can depict a human living in the 19th century in Nicosia and of

course skinning, so that the skin-mesh of the character is bound to the bones and therefore the

character’s movement looks natural. Having the model created in Autodesk 3ds Max as

Diagram 3-2: Relationships between the different elements that compose the whole project.

18

described above, using Mecanim, Unity’s Animation system, we can create smooth

animations for our characters. Mecanim uses ready animation clips that were created before,

using Motion Capture techniques and makes the transition from one clip to another smooth

and natural looking. An animation state machine is created and the transition occurs when

under specific conditions, certain parameters are defined, in model’s high level behavior.

High level behavior determines how the human agent acts. All people have a priority queue

of goals to achieve, which contains tasks such as ‘move 34’, ‘stay 16’, ‘buy 8’ or even

dynamic behavior, as wave to a specific person when they pass by. Collision avoidance is

handled using Unity Steer[2] so that agents do not bump into other agents or go through

buildings.

The various components of this project will be explained in the following chapters with more

details. The relations between the various components can be seen in Diag. 3-2.

Figure 3-16: Pictures and a drawing showing the kind of clothes of people were wearing during that era. These

were taken into account in order to create the human models for my project[24].

19

Chapter 4 Implementation of various modules

Implementation of various modules

4.1 Map Graph 19

4.2 Path Planning 23

4.2.1 Unsuccessful attempts 23

4.2.2 Junction waypoint Graph 25

4.3 High level behavior 26

4.3.1 Triggers 30

4.4 Animations 31

4.5 Low level behavior 35

4.5.1 Steering 355

4.5.2 Collision avoidance 37

4.1 Map Graph

Each person has to find their way throughout the city; hence human models should perform

path planning. The city has to be represented in an easy to implement and efficient way, so

that human agents can carry out their tasks by finding the shortest path to their destination in

order to fulfill all their goals. Our model should define the streets where people can wander

according to the real roads within the walled city of Nicosia. After several unsuccessful

attempts for path planning, which will be described in the next section, I decided that the best

method to use is a waypoint graph, where vertices are the junctions of the roads and therefore

edges are the streets where people can walk. Junction is any point in the city map, where it’s

possible to follow more than one path.

Having taken the 2D digital map of the Taht el Kale neighborhood that was produced by real

data from land registry; I have created an input file that describes the graph of this area.

20

node_info

<num_of_junction_points>

junID \t pos_x \t pos_y \t pos_z \t JunctionName \t juncType

…

graph

junID \t junIDs_of_adjacent_junctions

…

Figure 4-17: Format of mapJunctions.txt file that holds the vertices and edges of the graph representing the

roads of the city.

The position of each junction (pos_x, pos_y, pos_z) is the world coordinates, of the real road

junction in the Unity project where we have imported the city buildings that were produced

from CityEngine. The input file has the format showing in fig. 4-17. Graph section contains

the graph’s edges, for example line: 7 34 26, means that junction 7 is adjacent to

34 and 26 and there is a road-edge between junction7 and the other two junctions.

Create Map Graph

The graph of the city’s map is read first thing, when the program starts. The input file

contains all the junctions, their position, their names and the connections between them. First

junctions are added to the graph and afterwards the connections of all nodes are inserted.

Junctions can be seen as red spheres on Game mode if Show Graph on Play variable, of

CreateMapGraph.cs is set to true. Also by setting that to true, connections can be seen in

Scene view as red lines. Graph is loaded into a data structure and is used extensively by all

agents to find their way through the roads of the picturesque city.

Junction Waypoint Graph

My solution involves a waypoint graph. A graph of this type consists of several waypoints as

nodes and the edges between the nodes represent the available roads, the walkable areas.

A waypoint – node can be connected with more than one other nodes. An example of a

waypoint graph is shown in fig.4-18:

21

Using Dijkstra’s algorithm[18] each agent finds the shortest path from junction startID to

destID junction by calling function findPath (startID, destID). This function returns an array

with the IDs of the junctions that the human agent should follow to get to the destination by

the shortest path possible. Hence, the model walks towards the first node, then the second,

third… and finally it gets to their destination.

addNewNode_call

We should be able to add new nodes to this graph and update the fixed junctions-those read

from the input file. A new node, such as door or shop can be added, if it is not in the input

file, by attaching the addNewNode_call.cs script to the model that we want to add, as a new

node and by selecting from a drop-down list the type of the node.

 B

 N

 A

 D (door)

Figure 4-19: Example of the how addNewNode_call works

Figure 4-18: A waypoint graph in a scene in World of Warcraft game. Red dots stand for the nodes

of the graph, while yellow ones indicate the shortest available path from node A to B. All lines are

edges of the graph composing the various paths a kinematic agent could follow[28].

22

For example (fig. 4-19), each house’s door D should be added as a node to the graph, in order

to have people spawning from there. To do so, we find the edge with the smallest distance to

this node. Smallest distance from this node is found by calculating distance from point D to

all available edges and find the minimum one, the one that is nearest to the point D.

To calculate the distance, I have used the distance from a point to a line formula, in Euclidean

geometry shown in fig.4-20. Parameters a, b and c are calculated for all edges using algebraic

equations.

Let’s say that edge AB (A, B are junctions) is the nearest edge. We add a new node N – in

between the two nodes A, B; node N is the point of intersection of edge AB and the

perpendicular line to AB, ND. We can calculate the position of N, knowing that ND is

perpendicular to AB, by solving the system of linear equations[19] involving the line

equations of AB and ND, with the variables elimination method. By using the function

addNewJunction (N_pos, D_pos, A, B) we delete the vertices AB, BA and create new

vertices NA, NB (AN, BN too) and ND, DN as well. N_pos is the position of point N, D_pos

the door position and A and B are the junctionIDs of edge AB, which is the edge with the

minimum distance from point D (door). The new junctions added to the graph as well as the

new connections created here, can also be seen in Scene View by setting Show Graph on

Play of CreateMapGraph script to true.

Either by reading from mapJunctions file, or by addNewNode_call execution, if the new node

is a shop, its ID is added to the list of shops; if it is a door, it is inserted into the door-list.

These two lists are part of the MapGraph data structure.

Figure 4-20: ax+by+c is the equation representing edge AB, whereas (x0,y0) is the

point D. Although we have 3D space, we are using only X and Z dimensions (instead

of X and Y), ignoring Y-axis, the height difference.

23

4.2 Path Planning

4.2.1 Unsuccessful attempts

Human models are wandering in the city and have some tasks to achieve, for example

‘buy 34’, means go to junction 34 – if this is a shop, negotiate with the sales person and then

buy something. This indicates that people should be able to find a path to follow which will

lead them to their destination, junction34 for example. This path should be the optimum, the

shortest available path to the given destination. I have tried several algorithms for path-

finding, but unfortunately these did not work for my project. I am going to describe in little

detail about these algorithms and then the model of our solution will be explained.

A* pathfinding Unity [20]

I have downloaded ‘A* pathfinding project’ and I

have tried several available methods. In these

experiments capsule is representing a human who

wants to go to a destination, which in all these cases

is the sphere.

Grid Graph [21]

Grid graph method is able to generate nodes in a grid

pattern of size width * depth. You have to set to the

colliders the Obstacles tag and Ground tag as mask.

The properties of the Grid Graph are set in the

inspector window as shown in the following figure.

The problem I came across here is

that the seeker - capsule can’t find a

way around the wall; therefore it fails

in its mission to move to the sphere.

Obviously this method cannot be

used into my project.

Figure 4-21: Example of settings for the Grid

Graph

Figure 4-22: Scene on run-time showing that the capsule is

stuck behind the walls and can’t find its way to the sphere.

24

Figure 4-23(a): Example of Point Graph.

Notice that there aren’t any red lines –

connections where obstacles exist.

Figure 4-20(b): Points I have

assigned for my experiment.

Figure 4-20(c): When executing the

program, we face the same problem as the

previous experiment.

Figure 4-24: A navmesh should be a mesh where polygons describe the

walkable area, whereas vertices should lie at the edges of the mesh.

Point Graph [22]

The Point Graph is a simple graph style and it consists of a set of points placed by the user,

which are linked together. Every point is treated as a node of the graph and it is checked by

raycasting whether two nodes should be linked or not; whether there is an obstacle

in-between the two nodes or not. This point graph defines a point of walkability and not an

area, something that might end up in not smooth paths. Red cylinders in the following figures

represent the points of this graph and the blue lines show where a person can walk.

By executing the program we can see that the capsule is trying to approach the sphere, does

go near it, but it is stuck behind the wall and can’t find a way around the wall to get to the

sphere. Hence, this is not an acceptable approach for my project.

Navmesh [23]

The Navmesh Graph expresses the walkable area with triangle mesh instead of squares, as it

happens in Grid Graph or with points in Point Graph. It is faster than a grid graph as it

contains fewer nodes and it produces a smoother pathfinding.

Although Navmesh, it

may be appropriate for my

project, it needs Unity

PRO to generated

navmeshes automatically,

but since I am using the

free version of Unity,

unfortunately I am not

able to use it. Without

25

Unity PRO I would have to create the navmeshes for all the city area by myself manually, a

very tedious and difficult job. As a result I decided to use a variation of the previous graphs,

the junction waypoint graph, which I have previously described.

4.2.2 Junction waypoint Graph

I have created a graph according to the map of Nicosia, the Taht el Kale neighborhood, in

relation with the streets of this area. The top view of this region can be seen in the following

figure. The red spheres signify the position of the junction waypoints. As I have mentioned

before, I have set as waypoints all road junctions, or any spot in the map where a person

could take more than one paths. Grey color signifies the existence of streets, where

pedestrians can walk.

Each civilian has a number of tasks to accomplish. If the task says ‘move 26’, the human

agent must find the shortest path to follow and finally get to destination junction 26.

Therefore, the first time a person attempts to accomplish a certain move task, it has to

calculate and find the shortest path to follow to the given destination. This shortest path is

kept in a stack and the agent starts to move towards the first junction point. When they get

close enough to it, the next junction position is popped out of the stack and the agent heads

towards this new position. This goes on until all intermediate positions are popped out and

the agent should have managed to get to their destination by now.

Figure 4-25: Top view of a part of the Taht el Kale neighborhood. Red dots are the positions where a

junction waypoint – node of the graph exists. Red lines are showing the edges/connections between those

junctions.

26

for each node_junction v in Graph{

 dist[v] = infinity ; // best distance from starting point to node – v

 previous[v] = -1 ; // Previous node in optimal path

}

dist[source] = 0 ;

listQ = all nodes;

while (! listQ.isEmpty()){

u = findNodeWithSmallestDistIn(listQ);

 listQ.remove(u);

if (dist[u] == infinity)

break ; //can’t move further from this node

for each connected_node v of u{

temp = dist[u] + dist_between(u, v) ;

if (temp < dist[v]){

//new distance calculated is shorter than previous one

dist[v] = temp ; //update

previous[v] = u ;

}

}

}

return dist; //all previous nodes in optimal – shortest path

Figure 4-26: Dijkstra’s algorithm pseudo code

In order to find which is the shortest path, each agent uses function findPath(startID, destID)

which applies Dijkstra’s algorithm, its pseudo code shown below:

As long as each citizen can find its way throughout the town, the next step is to assign the

appropriate animations according to the agent’s behavior.

4.3 High level behavior

Civilians, in my model, have a set of specific tasks to accomplish, rather than just wandering

in the streets of the city. These tasks have been already defined in some task files. Hence,

when the program is executed, the first thing each agents does, is to read those goals from the

appropriate file and load them into a priority queue (implemented by Leslie Sanford, 2006).

At the beginning tasks are added to the task list, in a first come – first served manner, as there

are not any other tasks at the time. There are several types of tasks, each of them will be

explained below, as well as, what the character has to do to get them done. Each task also sets

the animator controller parameters, in order to make the agent have the appropriate animation

at the given time. The task file can contain in each line only a keyword from the collection

start, move, stay, negotiate, talk, dance, buy, end, accompanied by a number, separated by a

tab – white space. The diagram below demonstrates the inheritance of tasks. Buy, dance, idle,

27

negotiate and talk tasks, all inherit from Timed_tasks, as all of them happen for a specific

amount of time.

If instead of a number, integer or float, symbol ‘#’ is written in the input task file, then this

stands for a random number, either junctionID or number of seconds this action is going to

last.

Civilian on FixedUpdate(), which is called every fixed framerate frame, checks if the task

that is trying to achieve is completed or not yet. If it is not done yet, then doTask() is called in

order to complete the task. If the current task is already accomplished, the nextTask is popped

out of the priority queue and agent tries to fulfill it.

Start Task

This task is always at the beginning of the task list, so it always happens first. The number

that accompanies ‘start’ keyword represents the id of the junction where the character should

start its journey from. According to the norm, people would start from a house, therefore the

position of a door is a smart choice. If there are currently no doors in the door-list, agent will

begin from a junction randomly selected. Else, if the symbol ‘#’ goes with start keyword then

a doorID from the door-list is selected as the starting point for the character. If a number is

given, then the character starts from that junctionID.

Diagram 4-3: Tasks inheritance model. All tasks inherit from Task_interface and orange tasks inherit from

Timed task

28

Move Task

Move task is the task that gets the character moving around the city, wander in the streets and

go to the market and it is invoked with the ‘move’ keyword. In case of symbol ‘#’ a junction

is selected in random to go to. If the number given doesn’t correspond to a node of the graph,

then this move task is ignored and agent moves on to the next task.

The first time doTask() of move task is called, the path that the character should follow is not

calculated yet and that’s the reason that getsPath(startID, finalDestID) is called. This function

stores all the in-between nodes of the graph that the character should follow in order to follow

the shortest path available to get to the destination nodeID. The calculation of the shortest

path is done as described before in section 4.2.2.

If the difference of the destination position and current position is larger than a threshold,

meaning that that the civilian has not successfully moved to the destination node yet, then

target point of steerForPoint is set to be the destination point and the autonomousVehicle

script of Unity steer makes translates the model’s position towards it. At the same time

walkState parameter of the animator controller is set to true. This switches the character to

the walk(inplace) animation and as a result the model moves its legs like walking and its

position is changing and it looks like its walking in a natural way. The speed of walking can

be defined in the Inspector when the DancerScript.cs is attached to the human model.

If the difference is less than or equal to the threshold, then the next available in-between node

is popped out. If there are no nodes left and the difference is smaller than the threshold, the

agent has finally moved to their destination and the walkState parameter is set to false so that

it stops the walking animation. When character has reached a node and has to move on to the

next one according to the path calculated the model had to turn towards the next node

junction. This should be done smoothly in order to look natural and not rushed or forced.

Therefore I have handled steering with the method described in section 4.5 – Low-level

behavior. This method involves turning slowly towards the next destination when the civilian

gets close enough to an in-between junction.

29

End Task

End task is the last task in the character’s list of tasks, invoked with the ‘end’ keyword.

This keyword should be the last task written in every civilian’s task file. The character sets

animator controller’s danceState parameter to true, and this is the animation that they have

until user decides to finish the execution of the program.

Timed Tasks:

Timed tasks require a kind of timer in order to check the duration of each state. For this

reason, the first time each timed task is called, the start time is stored and in every frame the

difference of current time and start time is checked, to calculate if it matches animation’s

duration.

Buy Task

The keyword ‘buy’ signifies that the civilian should move to the shop specified, negotiate for

a little time with the salesperson and then buy something from the store. In the case of no

shops in the map, this task is ignored. If the ID specified does not belong to a shop or symbol

‘#’ is used, a shop from the list is randomly selected. Afterwards 3 tasks are added to the task

list: a move task with the shop as set destination, a negotiate one with fixed duration and

a buy task, which sets the negotiateState to true, in order to switch to the Negotiate sub-state

machine and then sets the grabState to true, to apply the appropriate animation, which causes

the agent to reach the salesman, to collect the goods bought. By the time it finishes shopping,

negotiateState is set to false, and it moves on to the next task in the list.

Dance

This is another timed task, which has duration in seconds the number that comes with ‘dance’

keyword. If in the task input file symbol ‘#’ is written, a random number in the range of 5 and

20 seconds is selected as the duration of the dance action. In the animator controller

danceState is set to true and only becomes false, when the duration of the action has passed.

30

Idle Task

Idle task is invoked with ‘stay’ keyword which is a timed task with duration of the number

set. If instead of number, ‘#’ is given, then duration is a random number between 3 and 30

seconds. Because there are 2 different idle states, when the task is set, idle1 or idle2 is

selected in a random manner.

Negotiate Task

Negotiate task, is a task that can be divided into two smaller tasks. Symbol ‘#’ signifies a

duration of greater than 5 and less than 15 seconds. negotiateState parameter is set to true and

talk1 or talk2 state is set to true in the first half of task’s duration. In the second half talkState

is set to false and listenState is set to true. This way, the human model first talks for half the

duration and listens the remaining time. Therefore, we create an illusion of interaction

between a potential customer and a salesman. When the timer meets duration time, listen, talk

and negotiate states are all set to false.

Talk Task

As all the previous timed tasks, talk task has the duration of the given number or a number

between 4 and 20 seconds. It is invoked by ‘talk’ keyword and it sets negotiateState and

talkState to true when the task begins to be executed and both these parameters to false when

the task is done.

4.3.1 Triggers

Triggers are some actions that happen only when something enters a characters Collider.

Usually characters have a Sphere or Capsule collider component attached and when another

collider enters this area, function OnTriggerEnter() is called. OnTriggerExit() is called

respectively when someone is leaving the area of the Collider.

addNewTask

Some people have the addNewTask script attached. When a character’s collider intersects

with another person’s collider, OnTriggerEnter() of DancerScript.cs is called, character stops

whatever they were doing and a new task is added in their list with the highest priority-0.

This happens only if the person, whose collider has collided, has the addNewTask script

31

attach and has the same type of Task too. That means that when two people who both have a

dance type task defined in their addNewTask.cs script, when they get close enough, they will

turn to look at each other and start dancing together. Likewise, when people have talk type

Task, they will turn to look at each other and start talking. The addNewTask.cs script is used

to define the type of the new task in Unity’s Inspector from a drop-down list. Furthermore,

steer for Neighbor Avoidance script is disabled, whereas steer for Point’s target is set to

models current position, in order to stop moving and not avoid the other person. The task that

was interrupted before is resumed, that is, is continued from where it was left, just because it

had been re-entered with priority-1 in the list and therefore it will be executed right after the

new task is done. For instance, if the character was in walking state, character continues to

follow the path to their destination. If a timed task was interrupted, then after the new task,

the interrupted one is executed, with the remaining time as duration.

salesPersonTrigger

Sales person, is the person behind a kiosk or anywhere in the market who is selling

something, fish, bread, meat or fruits and vegetables. These people have the

salesPersonTrigger.cs attached in order to interact with the possible customers that come to

their desk. When a character gets close enough, inside the salesman’s collider, salesman starts

to talk. As the customer is negotiating first they will talk and then they will listen to the

salesperson. That’s what the salesPersonTrigger.cs does. It ensures that when customer is in

talking state, salesman is in listening mode and vise versa. When buyer reaches out to get the

goods, salesman also reaches to hand out what the customer bought. Also it makes the buyer

to turn and look at the salesman when they talk to him.

waveTrigger

Wave trigger is invoked when two wandering people, not salesmen, are close enough and as a

result the two people are waving when they pass. This happens when. waveState parameter is

set to true in OnTriggerEnter() and is set to false in OnTriggerExit().

4.4 Animations

My project’s objective is to add life-like human models in the city of 19th century Nicosia.

But, what would it take to make the city come to life? Civilians should have the appropriate

animations according to their behavior in order to produce a realistic illustration of the life in

that era. Several animations correspond to different actions a person can perform.

32

To handle the animations of the human models I have used Unity’s Mecanim Animation

System which provides an easy workflow and setup of animations on humanoid characters.

Once the animation imported, it can be applied from one character model onto another, as

long as both characters are set up as Humanoid characters. Jumping from one animation to

the next one, would have been a very difficult job to do, nevertheless by exploiting the

advantages of Mecanim, this can be a simple task since Mecanim provides a visual

programming tool to manage complex interactions between animations. It is really important

to have a smooth transition from one animation to the other, otherwise the movement of the

character looks unnatural and not human-like.

For this project I have used Animation State machines. Every character is always busy

performing a particular action at any given time. These actions are represented as different

states in the State machine that is different actions a human model can perform. One of the

states is set up as default, shown with orange color and the next state depends on various

parameters. Depending on the current state of the model and the parameters at a given time, it

can switch to different states. This transition from one animation onto another are defined

with arrows from one animation to the next one. Each of these transitions has certain

restrictions defined by user. For example, a model can switch from idle state to walk, only

when parameter WALK is set to true. This parameter can be set through programming, for

instance when user pushes a button, the WALK parameter is set to true and character

switches to walking state and performs the corresponding walking animation. Parameters can

be of vector, integer, float or boolean data types and a transition can be defined to happen

after a certain amount of time or if a parameter is less, greater than or equal to a specific

number.

I have created an animator controller for all civilians that are wandering around the city and

another one for salespeople, the people who are in the market selling something. There are

also two variations of the salesperson animator, with different default state each, just so they

don’t start all with the same exact animation, which will not look very natural.

Salesman1

A salesperson is a non-moving character so its animator does not include a walk animation.

There are several idle animation states and it switches from one to the other, when a certain

time passes. When a person gets close enough to the salesperson to buy something, it triggers

the salesperson to switch to Negotiate state, who starts to talk, call out about the goods they

33

Figure 4-27: Second animator layer of Cypriot person, gives them

the ability to wave at other people.

sell. Salespeople can talk to and listen to their customers and perform the grab animation, in

order to hand out the goods to the person opposite them.

Each transition, as it can be seen in the figure below (c), can be modified so that the transition

from the one state-animation to the next lasts longer or shorter amount of time and user

specifies the exact time interval when the transition starts and ends. I have modified all

transitions in order to have smooth and natural shifts.

CypriotAnim

All people, not salespersons have this

animator attached to them. Base layer

(Fig. 4-29) is composed with idle1,

idle2, dance, walk and negotiate states.

Figure 4-28: Base animator layer of a salesperson. Different idle states in picture (a); salesman switches to Negotiate

state when a person approaches. Negotiate sub-state machine (b) is composed of talk1, talk2, listen and grab

animations. Selected transition in (b) can be modified in (c) by choosing when and how much to blend the two

animations.

(b)

(a) (c)

34

Apart from idle states the model can move around the city to buy something or talk to

someone when they pass by. It can even dance. Negotiate state is pretty much the same as

the negotiate state of the salesperson. Agent can talk, listen to the salesman and buy

something by switching to grab animation – state. Transitions are switched the same way as a

salesperson does, that is, when the specific parameters do change.

People with this animator, utilize the waveLayer (Fig. 4-28). Base layer is applied to the full

body of the character, which means that the whole body is animated, while wave layer only

applies to the right hand of the model. This is achieved by applying a custom mask, which

involves only the skeleton and muscles of the right arm of the model. When two people are

close enough, their colliders intersect, they wave at each other. Because the blending is set

up as override, the wave animation will override the animation of the right arm only,

whatever it was doing at the time. When for instance, a character passes by another, while

walking to his destination, his right arm waves, without affecting the walking animation of

the rest of his body.

Figure 4-29: Cypriot controller, all people except sales people have this attached to

their Animator controller

35

4.5 Low level behavior

4.5.1 Steering

Citizens in order to fulfill all their goals have to wander around the city and through the

narrow streets. Both ‘move’ and ‘buy’ keywords invoke tasks that make the character move

and follow a certain path. As a character follows a path, first they look at the first node that

the path contains. Then, for example when a man gets close enough to the node he starts

turning gradually towards the position of the next destination. If we don’t handle the turning

of the agent in each corner, the character would move to the first node and then would

immediately turn and look at the next node position. This movement would look forced and

of course not natural at all. Therefore I have tried to solve this problem, by using the method

described below.

Steering is managed during move task, as it is the only kind of task that the character has to

follow a path. Move task is described previously in section 4.3. The following figure explains

how steering works:

Let’s say that character will move first to position A-dest and then to B-nextDest.

For convenience we are going to use terms A and B. There are two cases: B is the last node,

the final destination of the path and B is an in-between node of the path – not the last one.

P

predict_Dist

y

target

currPos

A-dest
y

Figure 4-30: Steering example: The character is currently at currPos. The path to be followed order to move first

to A-dest and afterwards to B-nextDest.

B-nextDest

36

In the first case, where B is the final destination, character should move to A and gradually

start turning towards B, though, agent should just go to B and avoid making calculations

towards the next turn-destination, just because there is no next destination. When a

destination is the final one, nextDestID is set to -1 as flag. So, if the distance between current

position and final destination – B is larger than a threshold, meaning that character hasn’t

reached destination yet, agent should look towards this final position and move towards it.

If this distance is less than threshold (0.5) agent stops walking animation, sets move task to

done and stops moving forward. If next destination is the position of a shop, character moves

towards the target calculated (not shop position), as salesPersonTrigger of salesmen assures

that buyer looks at the salesman when buyer enter their collider, consequently this will make

the buyer to look at the salesman as the buyer approaches.

In the second case, turning should continue after A, towards B and afterwards towards C, the

next node position of the path. To calculate the rotation on y–axis of the character, in each

frame character looks at a calculated target position only if predict_dist is greater than

(|dest–currPos|.magnitute). Otherwise, agent looks towards A (dest position). Target is

calculated by:

predict_dist value depends on LOOK_AT_TIME. This time variable defines how “early”,

how far away will the character walk, until they reach a point where character starts to turn

towards the next destination in their path.

Figure 4-31: Target position calculation

LOOK_AT_TIME = used to calculate how far ahead the character looks

| dest – currPos |.magnitute = distance between dest and current position

|nextDest-dest|.normalized = normalized vector between dest and nextDest

Figure 4-32: Condition to stop turning smoothly and move on to the next node of the path:

Cosine of the angle between v1 and v2 OR character is too close to nextDest

v1 = |nextDest - dest| vector

v2 = |nextDest - currPos| vector

v1 ∙ v2 is the dot product between v1 and v2

||vi|| = is the magnitude of vi

37

Citizen turns in every frame until vectors v1 and v2 are almost the same. Therefore thresh

should be as close to 1 as possible (cos(0o) = 1). Also, if character is very close to B

(nextDest), character should move on and set dest and nextDest accordingly. In case that the

inequality in Fig. 4-32 is true, agent has already turned towards dest or they have reached

nextDest. Hence dest takes the value popped node (= nextDest) and nextDest takes the value-

position of the node (after pop()) on top of the stack which contains the path. Target now

takes the value of dest and it will not change until predict_Dist becomes greater than (|dest–

currPos|.magnitute). If there are no nodes left in stack, we set nextDestID to -1 in order to

stop turning when dest is the final node of the path.

In the following figure, several frames were taken at the time that a human model was

executing a walk task. Frames are sorted earlier on the left and the later ones to right,

showing how the human model is rotating little by little unto the next node position. Notice

that character does not wait to reach the first destination (red sphere) in order to start rotating

(turning) and as a result a smooth rotation is observed.

4.5.2 Collision avoidance

Collision avoidance is the process of preventing something from colliding with another

object. In crowd simulation, collision avoidance means preventing human agents from

colliding with other humans, as well as obstacles, such as buildings or scene props.

In my project I have successfully applied UnitySteer’ s code to my models in order to avoid

colliding each other when walking. UnitySteer[2] is a library of steering components for

Unity based on OpenSteer, covering anything from path following to obstacle avoidance to

Figure 4-33: Cypriot character turning gradually towards the next destination, showing the results of steering

38

Figure 4-34: Scripts necessary for collision avoidance

between human agents.

following neighboring vehicles. The library is under the MIT license and hosted on Github.

Unfortunately, I could not manage to make human characters to avoid collision with

buildings.

In order to avoid walking into each other we set the layer of every single wandering person to

be Neibhbors and we attach the following scripts of UnitySteer:

 Autonomous Vehicle

 Radar Ping

 Steer For Neighbor Avoidance

 Steer For Point

In Autonomous Vehicle we set the radius

according to the human model size and the

max speed that we wish our civilians to

have and as a result this script makes the

character move. Radar Ping is the script

that checks if another game object of

Layers checked is inside Detection

Radius. Therefore we set it to check for

Neighbors and Obstacles layers and the

detection radius large enough so that we

can detect people who are close and there

is a possibility to collide with them. Steer

for Neighbor Avoidance is the most

important script for collision avoidance,

where we set how much weight we want,

the rotation angle with which a person will avoid another and how much time before collision

we want our characters to change direction in order to not bump into each other. Now, Steer

for Point works along with Autonomous Vehicle. to move the character to a certain position.

This position is the Target Point.

In general by attaching these scripts to a citizen model it makes it check, for other citizens

less than a certain radius away and if it predicted (according to their speed and direction) that

they will collide, both citizens rotate a small angle and as a result they avoid crashing into

each other.

39

When an agent starts their journey, when executing start task we disable both SteerForPoint

and SteerForNeighborAvoidance as we only need to avoid people when walking. Thus in the

beginning of every move task, we enable them both, in order to avoid other wandering

people. Of course when a person reaches the end of their journey both scripts are disabled

again so that people do not move when in idle, talk, dance, etc. mode to avoid other people

that are approaching.

Knowing the importance of collision avoidance with nonmoving obstacles, this is something

that I tried hard on achieving. Unfortunately, due to lack of time and the rate of difficulty of

the process, I did not succeed in implementing it successfully. Thinking creatively I made an

attempt to achieve my goal by using UnitySteer, which provides code for avoiding collision

with spherical objects. Having this code people check if there are any spherical obstacles

close to them and calculate the force needed to steer to avoid the closest ones. I have tried to

find circle – rectangle intersection, but I was not successful in my attempt. Although I have

managed to find point – rectangle intersection, having known whether an obstacle is colliding

with our character or not, still I had difficulty in calculating the force needed to avoid

crashing into the building, thus having an end result where the agent, ends up walking

through the obstacle. I would like to register this, as drawback in my project, as still is not

implemented, and collision avoidance for the buildings inside the city, is still a task for

further development so as to reach a realistic result.

40

Chapter 5 Results

Results

5.1 Map Graph 40

5.2 High Level Behavior - Steering 41

5.3 Marketplace 44

For the purposes of my dissertation project I have tried to bring a part of Nicosia to life.

I had been given the generated models of the buildings of Taht el Kale mahalla

(neighborhood) that have been produced using architectural rules and the data from the land

registry[1]. In the following screenshot you can see the part of Nicosia that I had to work

with:

5.1 Map Graph

Figure 5-35: Taht el Kale mahalla (neighborhood). House models were created using architectural rules and

land registry data

41

I have created a graph manually according to the map I had been given, on to which I made

adjustments in order to make the houses fit in the corresponding land borders. An input file

was created in order to create the graph with its nodes and edges. To do so, I have manually

added spheres in every road junction or wherever a person could choose more than one paths

to follow. The 3D space positions of the sphere nodes have been written in the file using

writeJunsPos.cs which is attached to ‘Junction’ in the format described in section 4.1 Map

Graph. To create the graph edges I had to write manually the connections of the junction

nodes. Graph nodes are shown below as red small spheres, whereas edges are shown as red

lines connecting the spheres. Besides using as input the mapJunction.txt file that was

produced to create the map, new nodes and their edges can be added to the graph by attaching

the addNewNode_call script on the Unity Game Object that we want to add as a new graph

node. House doors and shops utilize addNewNode_call functionality in order to add all 20

doors and the kiosks to the graph as new nodes.

5.2 High Level Behavior and Steering

There are two types of behavior for our human models. There are the wandering people and

the sales persons. In my implementation there are about 25 wandering persons and 13

salesmen. Wandering people have the DancerScript.cs attached, which is the main controller

Figure 5-36: Graph produced is denoted in red. Small spheres show the position of nodes, while lines show the connections

between the various junction nodes.

42

of each person, as well as the CypriotAnim animator controller, which works with

DancerScript in order to assign the appropriate animations to the character. These people can

also have waveTrigger attached, in order to wave at other people when they pass by and

addNewTask which enables them to dynamically stop whatever they were doing, add a new

task to their list, execute it and afterwards continue from where it was interrupted.

Wandering people are starting their journey from a certain junction point or from a house

door and then begin to fulfill the goals written in their taskfile one by one. They are walking

through neighborhood’s picturesque roads, they may go to the market, negotiate with the

salesman and at finally buy something. They are able to talk with each other when they get

close enough, dance and of course they can stay idle. Because of the Mecanim animation

system transitions between different animations are quite smooth. A person goes from

walking to dancing, to buying something to staying idle for a while in a natural realistic way.

In the case that a citizen walks to a node or is standing in idle mode, and the path sets an

order for the next destination one being at the opposite direction, the rotation at it, is a bit

rough and it is subject to improvement. An appropriate animation in which the human model

turns around, could be handy in this case, but unfortunately such animation was not available.

Figure 5-37: Some human models created for this project

43

Figure 5-38: A Cypriot human model

When two or more people with the addNewTask script attached, get close enough for their

colliders to intersect, they stop whatever task they are executing and they do the task defined

in the Inspector. If that task is dance or talk, people turn to look at each other, to do those

tasks and hence, when they will continue with the re-entered interrupted task, the rotation is

still not a smooth one, for the reasons set above.

There are a few sales people who have salesPersonTrigger attached and salesman animator

controller. These people are always in the same place, they are standing by their kiosk or

table at the market. Consequently they neither need the walking animation nor the dancing

one, for obvious reasons. Salesmen have idle states and the negotiate sub-state animation, the

latter, consisting of talk, listen and grab animations in order to negotiate with the buyer and

then hand out the goods to them. Also when a move task is followed by another move task,

steering is not effective in these cases, as they are two different tasks and have two separate

paths.

Anywhere people go they should be able to turn effortlessly so that the movement would look

realistic and normal. With the method used in section 4.5.1 they actually rotate towards their

next destination node in a pretty good way, which looks natural and realistic. However,

in some cases, mostly in the area of the marketplace, where distances between nodes are quite

short, people as they are turning unto their target position, sales person forces them to look at

them and consequently a jerky movement may be noticed. This is not evident at all times, it

depends on the angle of the last two edges of the path and how long these edges are.

44

The reason for that is that characters may reach their destination before they have fully

rotated towards it yet.

5.3 Marketplace

Having an open space, without any buildings, I decided to create a marketplace there, so that

our human models would be able to go there for shopping. I have used models from the

package Medieval Marketplace[17] which I have downloaded from Unity’s Asset Store.

The package contained some buildings but these buildings could not be used in my project as

they do not fit the 19th era and did not look like the Cypriot traditional houses. For that

reason I have only utilized the models available that could fit in the marketplace. I have

created a market scene with a lot of crates full of potatoes, cherries and apples and a variety

of booths as kiosks, where salespeople could sell bread, meat and fish. I have added some

additional props for decorating the scene and making it more realistic. Such props were

various sizes of barrels and crates, as well as a wheel, a barrow and a bull cart.

Figure 5-39: Screenshot of the marketplace. Graph nodes and edges showing in red

Figure 5-41: The old bazaar in Ermou Street in early 20th

century [29]

Figure 5-41: Old man sitting in front of his

shop[24]@@

45

Sales people have a simple job to do. They are standing in idle mode until a buyer (his name

starts always with “p_”) gets into their sphere collider, meaning that they have got really

close. Automatically the salesman starts talking, touting his merchandise. Buyers walk to the

shop and their next task is to negotiate with the seller and then buy something. The negotiate

state consists of two sub-modes: first a buyer starts to talk for half the amount of negotiate

task duration and for the second half time listens to the salesperson. Hence, the seller will

start listening when buyer is in talking mode and will start to talk, when buyer stops talking

and starts to listen to them. When buyer stretches their hand to “take” the product bought, so

does the sales person and therefore we can observe a realistic shopping transaction.

Figure 5-42: Salesman hands out goods to buyer

46

Chapter 6 Future Work

Future Work

6.1 Improvements 46

6.1 Improvements

The dissertation project I was assigned is part of a broader project. Besides my contribution

as part of my dissertation, there are several improvements that could make the project even

more realistic and consequently the result would be a more genuine and vivid representation

of life in 19th century Nicosia, abiding with the concept of the project.

The overall result is successful and displays a quite natural and realistic movement of life in

Nicosia of the 19th century. I need to report two major drawbacks currently in this project

which are subject of improvement. Firstly, collision avoidance with buildings. At times it is

recorded that agents on a turn attempt may collide with a wall of a building, especially when

being in narrow streets. Secondly, the rotation to an opposite direction is not smoothly

succeeded. To my consideration an animation where the character turns around naturally

could be an appropriate animation to set the image in a more natural movement.

To enrich the whole project several different human models could be added, for instance

women, children people of various religions and ethnicities that used to live in Nicosia at that

era.

Moreover, using Motion Capture, we could create some additional animations, thus enabling

the agents to engage into more complex actions, such as eat something, pay, walk around

holding a bag or another prop or check the products. Traditional Cypriot dances could

substitute the current mainstream modern dance animation. These animations could clearly be

47

associated with the job of each person. The data provided by the land registry gives plenty

information over the professions of the owner of each house. Therefore we could display an

ordinary day of a Cypriot agent starting from the door of his house, to his profession, and

observe him eat and sleep.

In addition, likewise the commercial game The SIMS[11], we could be able to create a

variety of different behaviors triggered by human needs. A person at a time could be thirsty,

hungry or sleepy, thus they could do the appropriate actions to satisfy those needs.

Appropriate animation tasks like ‘go to well’, ‘eat’ or go to their house to sleep are only some

examples of such actions. Furthermore, interaction between human models is another

candidate improvement. It would be nice to see characters touch each other, hug, handshake

and take some “actual” products in bags or in their hands. It would be interesting to watch

people walking or working together, such as lifting

My project is implemented for just a small neighborhood in Nicosia. This could be expanded

to all the city are within the walls, as long as there is available information from the land

registry about houses, their owners and a digital map for the whole area. Props of the era

could be added as well in order to create the physical environment of the city. For instance

palm trees and animated animals would give a better sense of what was life in Nicosia in the

19th century.

Hopefully this project will be improved and expanded and as a result a very interesting both

educational and entertainment tool, will be created.

Figure 6-43: A top view of the market place scene

48

Bibliography

[1] C. Panayiotis, I. Hesperia, C. Apostolou, and C. Yiorgos, “Reconstruction of Everyday

Life in 19th Century Nicosia,” Progress in Cultural …, pp. 568–577, 2012.

[2] R. J. Méndez, “UnitySteer - Steering components for Unity.” [Online]. Available:

http://arges-systems.com/blog/2009/07/08/unitysteer-steering-components-for-unity/.

[3] M. Dikaiakou, A. Efthymiou, and Y. Chrysanthou, “Modelling the Walled City of

Nicosia,” 2003.

[4] J. Milazzo, N. Rouphail, J. Hummer, and D. Allen, “Effect of Pedestrians on Capacity

of Signalized Intersections,” Transportation Research Record: Journal of the

Transportation Research Board, vol. 1646, no. -1, pp. 37–46, Jan. 1998.

[5] S. P. Hoogendoorn and P. H. L. Bovy, “Pedestrian route-choice and activity

scheduling theory and models,” Transportation Research Part B: Methodological, vol.

38, no. 2, pp. 169–190, Feb. 2004.

[6] L. F. Henderson, “On the fluid mechanics of human crowd motion,” Transportation

Research, vol. 8, no. 6, pp. 509–515, Dec. 1974.

[7] G. G. Lovas, “Modeling and simulation of pedestrian traffic flow,” Transportation

Research Part B: Methodological, vol. 28, no. 6, pp. 429–443, Dec. 1994.

[8] N. Pelechano, J. M. Allbeck, and N. I. Badler, Virtual Crowds: Methods, Simulation,

and Control, vol. 3, no. 1. Morgan & Claypool Publishers, 2008, pp. 1–176.

[9] D. Helbing and P. Molnar, “Social force model for pedestrian dynamics,” Physical

review E, vol. 51, no. 5, pp. 4282–4286, 1995.

[10] W. Shao and D. Terzopoulos, “Autonomous pedestrians,” Graphical Models, vol. 69,

no. 5–6, pp. 246–274, Sep. 2007.

[11] “The SIMS 3.” .

[12] E. W. Weisstein, “Cellular Automaton,” MathWorld.

[13] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral model,” ACM

SIGGRAPH Computer Graphics, vol. 21, no. 4, pp. 25–34, Aug. 1987.

[14] J. Maïm, S. Haegler, and B. Yersin, “Populating ancient pompeii with crowds of

virtual romans,” … Symposium on Virtual …, vol. 0, no. 0, 2007.

[15] G. Ryder, P. Flack, and A. M. Day, “A Framework for Real-Time Virtual Crowds in

Cultural Heritage Environments,” 2005.

49

[16] “Unity.” [Online]. Available: http://unity3d.com/unity/.

[17] “Medieval Marketplace.” [Online]. Available:

https://www.assetstore.unity3d.com/#/content/1812.

[18] E. W. Dijkstra, “A Note on Two Problems in Connexion with Graphs,” in Numerische

Mathematlk 1, 1959, pp. 269–271.

[19] Wikipedia, “System of linear equations.” [Online]. Available:

http://en.wikipedia.org/wiki/System_of_linear_equations.

[20] “A* Pathfinding Project.” [Online]. Available: http://arongranberg.com/astar/.

[21] “A* Pathfinding Project - Grid Graph.” [Online].

Available: http://www.arongranberg.com/astar/docs/graph_types.php#grid.

[22] “A* Pathfinding Project - Point Graph.” [Online]. Available:

http://www.arongranberg.com/astar/docs/graph_types.php#point.

[23] “A* Pathfinding Project - NavMesh.” [Online]. Available:

http://www.arongranberg.com/astar/docs/graph_types.php#navmesh.

[24] “The Leventis Municipal museum of Nicosia.” Nicosia.

[25] “Airport Security - SMART Solutions Network.” [Online]. Available:

http://www.smart-solutions-network.com/photo/cardiff-city-centre-2.

[26] H. Yeh, S. Curtis, S. Patil, J. Van Den Berg, D. Manocha, and M. Lin, “Composite

Agents,” 2008.

[27] Anthony Capobianchi, “UNITY 4 – LOOKING FORWARD.” [Online]. Available:

http://blog.infrared5.com/2012/09/unity-4-looking-forward/.

[28] “Game/AI: Fixing Pathfinding.” [Online]. Available: http://www.ai-

blog.net/archives/000152.html.

[29] Z. M. Rena Hoplarou, “Nicosia is calling … Chrysaliniotissa Neighborhood.” 2012.

